Search results for "subharmonic functions"

showing 2 items of 2 documents

Approximation of plurisubharmonic functions

2015

We extend a result by Fornaaess and Wiegerinck [Ark. Mat. 1989;27:257-272] on plurisubharmonic Mergelyan type approximation to domains with boundaries locally given by graphs of continuous functions.

Numerical AnalysisPure mathematicsApplied Mathematics010102 general mathematicsMathematical analysista111Type (model theory)01 natural sciences010101 applied mathematicsComputational Mathematicsboundary regularityMergelyan type approximationcontinuous boundaryplurisubharmonic functions0101 mathematicsapproximationAnalysisMathematicsComplex Variables and Elliptic Equations
researchProduct

Improved Bounds for Hermite–Hadamard Inequalities in Higher Dimensions

2019

Let $\Omega \subset \mathbb{R}^n$ be a convex domain and let $f:\Omega \rightarrow \mathbb{R}$ be a positive, subharmonic function (i.e. $\Delta f \geq 0$). Then $$ \frac{1}{|\Omega|} \int_{\Omega}{f dx} \leq \frac{c_n}{ |\partial \Omega| } \int_{\partial \Omega}{ f d\sigma},$$ where $c_n \leq 2n^{3/2}$. This inequality was previously only known for convex functions with a much larger constant. We also show that the optimal constant satisfies $c_n \geq n-1$. As a byproduct, we establish a sharp geometric inequality for two convex domains where one contains the other $ \Omega_2 \subset \Omega_1 \subset \mathbb{R}^n$: $$ \frac{|\partial \Omega_1|}{|\Omega_1|} \frac{| \Omega_2|}{|\partial \Ome…

Pure mathematicsInequalitymedia_common.quotation_subject01 natural sciencesConvexitysymbols.namesakeMathematics - Metric GeometrySettore MAT/05 - Analisi MatematicaHadamard transformHermite–Hadamard inequality0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Hermite-Hadamard inequality subharmonic functions convexity.0101 mathematicsComputingMilieux_MISCELLANEOUSsubharmonic functionsmedia_commonMathematicsSubharmonic functionHermite polynomialsconvexity010102 general mathematicsMetric Geometry (math.MG)Functional Analysis (math.FA)Mathematics - Functional AnalysisMSC : 26B25 28A75 31A05 31B05 35B50Mathematics::LogicHermite-Hadamard inequalityDifferential geometryMathematics - Classical Analysis and ODEsFourier analysissymbols010307 mathematical physicsGeometry and TopologyThe Journal of Geometric Analysis
researchProduct